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About this guidance 
This guidance discusses privacy-enhancing technologies (PETs) in detail. 
Read it if you have questions not answered in the Guide, or if you need a 

deeper understanding to help you apply PETs in practice. It is aimed at DPOs 
and those with specific data protection responsibilities in larger organisations. 

If you haven’t yet read the ‘In brief’ page on PETs in the Guide to Data 
Protection, you should read that first. It introduces this topic and sets out the 
key points you need to know, along with practical checklists to help you 
comply. 

  

https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/accountability-and-governance/data-protection-by-design-and-default/
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/accountability-and-governance/data-protection-by-design-and-default/
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How can PETs help with data protection 
compliance? 

At a glance  

• PETs can help you demonstrate a ‘data protection by design and by 
default’ approach to your processing. 

• PETs can help you to comply with the data minimisation principle by 
ensuring you only process the data you need for your purposes, and 
provide an appropriate level of security for your processing. 

• You can use PETs to give access to datasets which would otherwise be 
too sensitive to share, while ensuring individuals’ data is protected. 

• However, you should not regard PETs as a “silver bullet” for data 
protection compliance. Your processing still needs to be lawful, fair and 
transparent. 

• You should perform a case-by-case assessment (eg, through a data 
protection impact assessment (DPIA)) to determine if PETs are 
appropriate for your aims. 

In detail 

• What are privacy-enhancing technologies (PETs)?  

• How do PETs relate to data protection law?  

• What are the benefits of PETs?  

• What are the risks of using PETs? 

• What are the different types of PETs?  

• Are PETs anonymisation techniques?  

• When should we consider using PETs?  

• How should we decide whether or not to use PETs?  

• How do we determine the maturity of a PET? 

What are privacy-enhancing technologies (PETs)? 

PETs are technologies that embody fundamental data protection principles by 
minimising personal data use, maximising data security, and/or empowering 
individuals. Data protection law does not define PETs. The concept covers 

many different technologies and techniques. The European Union Agency for 
Cybersecurity (ENISA) refers to PETs as: 

https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/principles/data-minimisation/
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Quote 

‘software and hardware solutions, ie systems encompassing technical 

processes, methods or knowledge to achieve specific privacy or data 
protection functionality or to protect against risks of privacy of an individual 
or a group of natural persons.’ 

How do PETs relate to data protection law? 

PETs are linked to the concept of ‘data protection by design’, and are 
therefore relevant to the technical and organisational measures you put in 
place. They can help you implement the data protection principles effectively 
and integrate necessary safeguards into your processing. 

PETs can help you demonstrate a ‘data protection by design and by default’ 
approach by: 

• complying with the data minimisation principle, by ensuring you only 
process the data you need for your purposes; 

• providing an appropriate level of security; 

• implementing robust anonymisation or pseudonymisation solutions; 
and 

• minimising the risk that arises from personal data breaches, by 
rendering the personal data unintelligible to anyone not authorised to 
access it. 

Relevant provisions in the legislation 

See UK GDPR Article 25 and Recital 78 (data protection by design and by 
default) and Articles 5(1)(f), 32 and Recital 83 (security) 

What are the benefits of PETs? 

PETs can help reduce the risk to individuals, while enable further analysis of 
personal data without a controller necessarily sharing it, or a processor 
having access to it. The ability to share, link and analyse personal data in 
this way can provide valuable insights while ensuring you comply with the 
data protection principles.  

By using PETs, you can obtain insights from datasets without compromising 

the privacy of the individuals whose data is in the dataset. Appropriate PETs 
can make it possible to give access to datasets which would otherwise be too 
sensitive to share.  

https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/principles/data-minimisation/
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What are the risks of using PETs? 

PETs should not be regarded as a silver bullet to meet all of your data 
protection requirements. Your processing must still be lawful, fair and 

transparent. Before considering PETs, you should assess the impact of the 
decision-making process, purpose specification (ie specifying a legitimate 
purpose for processing) and how you can comply with accuracy and 
accountability requirements. 

Lack of maturity 

Some PETs may not be sufficiently mature in terms of their scalability, 
availability of standards and their robustness to attacks. We provide some 
factors you should consider to assess maturity of PETs later in this guidance. 

Lack of expertise 

PETs can require significant expertise to set up and use appropriately. 
Insufficient expertise can lead to mistakes in implementation, and a poor 
understanding of how to configure the PET to deliver the appropriate balance 
of privacy and utility. If you do not have required expertise then you should 
consider using an off-the-shelf product or service which provides an 
appropriate level of support. 

Mistakes in implementation 

There may be differences between the implementation of a PET in theory and 
its practical application. Risks to individuals’ rights and freedoms may arise 
as a result. Attacks and vulnerabilities should also be monitored regularly, to 
ensure that appropriate mitigation measures can be put in place.  

A lack of appropriate organisational measures can lower or even completely 
undermine the effectiveness of a PET. Depending on the threat model, some 
PETs can assume a trusted processor is used (ie a processor trusted not to 
act in a malicious or negligent manner). In this case, assurances are mainly 
derived from organisational controls, including legal obligations (such as 
contractual controls), monitoring and auditing processes. 

What are the different types of PETs? 

This guidance provides an introduction to some PETs that you can use to help 
you comply with your ‘data protection by design’ obligations. They help you 
minimise the personal data you collect, and integrate safeguards into the 
processing. Many aspects of PETs are also relevant for individuals. However, 

this guidance focuses on PETs that organisations can use.  

Several categories of PETs can help achieve data protection compliance, 
including ‘data protection by design and default’. These include PETs that: 
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• reduce the identifiability of the individuals to whom the data you are 
processing relates. These can help you to fulfil the principle of data 
minimisation;  

• focus on hiding and shielding data. These can help you achieve the 
requirements of the security principle; and  

• split or control access to personal data. These can help you to fulfil 
both the data minimisation and security principles, depending on the 
nature of the processing.  

PETs that derive or generate data which reduces or removes the 
identifiability of individuals 

These aim to weaken or break the connection between an individual in the 
original personal data and the derived data. Examples include:  

• differential privacy; and  

• synthetic data.  

These PETs can effectively reduce risk to individuals. However, the resulting 
data may provide less utility compared with the original data. This may 
reduce how close the randomised answers to queries are to the real ones (ie 
those without noise applied). This may mean the results may not be suitable 
for some types of processing where the actual results are required to fulfil 

the purposes. 

PETs that focus on hiding, or shielding, data  

These aim to protect individuals’ privacy while not affecting the utility and 
accuracy of the data. For example:  

• homomorphic encryption, which allows computation to be performed 
on encrypted data without revealing the plaintext; and  

• zero-knowledge proofs, which allow one party to prove to another 
party that something is true, without revealing what that something is 
or indeed anything else (such as the underlying data). 

PETs that split datasets or control access to certain parts of the data 

These PETs aim to minimise the amount of personal data shared and to 
ensure confidentiality and integrity, while not affecting the utility and 
accuracy of the data.  

They take a systems and data architectures approach to processing, 
managing, and storing personal data. These approaches define how personal 

data is collected, distributed, stored, queried, and secured, and how each 
component of the system communicates with each other. They may split 
data for computation or storage, or provide dedicated hardware to prevent 
the operating system or other application from accessing the personal data. 

https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/principles/integrity-and-confidentiality-security/
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The nature of the processing using these approaches means that the 
linkability risk between the split data is significantly reduced. 

Examples include:  

• trusted execution environments (TEEs);  

• secure multi-party computation (SMPC), including private-set 
intersection (PSI); and  

• federated learning.  

Are PETs anonymisation techniques? 

PETs and anonymisation are separate but related concepts. Not all PETs 
result in effective anonymisation, and you can achieve anonymisation without 
using them. 

At the same time, PETs can play a role in anonymisation, depending on the 
circumstances. For example, you can configure differential privacy methods 
to prevent information about specific individuals being revealed or inferences 
about them being made.  

However, the purpose of many PETs is to enhance privacy and protect the 
personal data you process, rather than to anonymise that data. This means 

that:  

• many PET use-cases still involve personal data; and 

• when you deploy such techniques, you still need to meet your data 
protection obligations. 

Further reading 

See the sections of this guidance on identifiability and pseudonymisation for 
more information.  

When should we consider using PETs? 

PETs can help you achieve compliance with the data protection principles, 
particularly data minimisation, purpose limitation and security. They can help 
you protect individuals’ privacy and effectively implement ‘data protection by 
design’. 

Whether a specific PET, or combination of PETs, is appropriate for your 
processing depends on your particular circumstances. You should consider 
implementing PETs at the design phase of any project. A data protection 
impact assessment (DPIA) is a useful tool that can guide your considerations. 

https://ico.org.uk/media/about-the-ico/documents/4018606/chapter-2-anonymisation-draft.pdf
https://ico.org.uk/media/about-the-ico/consultations/4019579/chapter-3-anonymisation-guidance.pdf
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PETs are particularly suitable in contexts that involve large-scale collection 
and analysis of personal data (eg AI applications, Internet of Things and 
cloud computing services).  

How should we decide whether or not to use PETs? 

You should perform a DPIA to determine if PETs are appropriate to meet your 
aims. Your assessment should consider: 

• the nature, scope, context and purposes of your processing;  

• the state-of-the-art and costs of implementation of any PETs; and 

• the risks your processing poses to individuals’ rights and freedoms. 

The nature of the processing is what you plan to do with the personal data. 

The scope of the processing is what the processing covers.  

The context of the processing is the wider picture, including internal and 
external factors which might affect expectations or impact of the processing.  

The purpose of the processing is the reason why you want to process the 
personal data. 

You should consider the PET’s state-of-the-art to understand whether it is 

sufficiently mature for your purposes, and to check that you keep informed 
about the PETs available as the market changes. You are not required to 
implement the newest technologies available.  

The cost of a technique can be a factor in considering which PET to 
implement, rather than a reason for not implementing any privacy-enhancing 
measure.  

Further reading 

See our DPIA guidance for more information on nature, scope, context and 
purpose of the processing. 

For further guidance, you should read the section on data protection by 
design and security in the ICO draft guidance on pseudonymisation. 

How do we determine the maturity of a PET? 

There are different ways to determine a PET’s maturity. Technology 

Readiness Levels (TRLs) are a common approach. These categorise PETs into 
discrete categories of maturity from conceptual to market-ready products.  

Some models (eg ENISA’s PETs maturity assessment) combine TRLs with 
various quality measures including scalability, trust assumptions and levels of 

https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/data-protection-impact-assessments-dpias/how-do-we-do-a-dpia/#how6
https://ico.org.uk/media/about-the-ico/consultations/4019579/chapter-3-anonymisation-guidance.pdf
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protection, and versatility for different purposes. These are used to generate 
a rating based on market maturity and the PET’s quality.  

Other approaches to assessing PET suitability focus more on: 

• the protections the PET provides;  

• the risks of personal data leakage for a given threat model used; and  

• scalability and complexity issues. 

Some PETs may be theoretical, immature or unscalable. These can be 
challenging to implement. Just because something exists at the cutting edge 
doesn’t mean you have to implement it to comply with data protection law – 
particularly if it is not yet practical to do so.  

Some PETs are newer or more theoretical than others, and standardisation 
can therefore be at its early stages. Where standards do exist, you should 
take them into account in the design and implementation of data protection 
measures. You should ensure that appropriate technical and organisational 
measures are in place to mitigate against risks for a given threat model, as 
defined by relevant standards (eg ISO and IETF standards).  

For example, standards can provide further detail and guidance about: 

• specific attacks and how these can be mitigated; 

• technical and organisational measures required for a given threat 
model (eg contractual controls and security measures such as access 
control); and 

• technical and organisational measures required to ensure the security 
properties are maintained (eg management of cryptographic keys and 
tuning and security parameters). 

We have produced a table on the availability of industry standards for PETs. 

Relevant provisions in the legislation 

See Article 25 and Recital 78 of the UK GDPR 

Further reading – ICO guidance 

Read our guidance on data protection by design and by default. 

 

Further reading outside this guidance 

For more information on methodologies for assessing the maturity of PETs, 
see guidance from the European Union Agency for Cybersecurity (ENISA), 
including: 

https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/accountability-and-governance/data-protection-by-design-and-default/
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• Readiness analysis for the adoption and evolution of PETs (2016) 

• PETs controls matrix: a systematic approach for assessing online and 
mobile privacy tools (2016) 

• PETs: evolution and state of the art (2017) 

• A tool on PETs knowledge management and maturity assessment (2018) 

• ENISA’s PETs maturity assessment repository (2019) 

• The Royal Society’s 2019 report-“Protecting privacy in practice” (external 
link, PDF) also provides information about the current use, development 
and limits of PETs.  

  

https://www.enisa.europa.eu/publications/pets
https://www.enisa.europa.eu/publications/pets-controls-matrix/pets-controls-matrix-a-systematic-approach-for-assessing-online-and-mobile-privacy-tools
https://www.enisa.europa.eu/publications/pets-controls-matrix/pets-controls-matrix-a-systematic-approach-for-assessing-online-and-mobile-privacy-tools
https://www.enisa.europa.eu/publications/pets-evolution-and-state-of-the-art
https://www.enisa.europa.eu/publications/pets-maturity-tool
https://www.enisa.europa.eu/publications/enisa2019s-pets-maturity-assessment-repository
https://royalsociety.org/-/media/policy/projects/privacy-enhancing-technologies/privacy-enhancing-technologies-report.pdf
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What PETs are there? 

At a glance  

• PETs are available for a variety of purposes (eg secure training of AI 
models, generating anonymous statistics and sharing data between 
different parties). 

• Homomorphic encryption provides strong security and confidentiality 
by enabling computations on encrypted data without first decrypting it. 

• Secure multiparty computation (SMPC) provides data minimisation and 
security by allowing different parties to jointly perform processing on 
their combined data, without any party needing to share its all of its 
data with each of the other parties. 

• Federated learning trains machine learning models in distributed 
settings while minimising the amount of personal data shared with 
each party. 

• Trusted execution environments provide enhanced security by enabling 
processing by a secure part of a computer processor, which is isolated 
from the main operating system and other applications. 

• Zero-knowledge proofs (ZKP) provide data minimisation by enabling an 
individual to prove private information about themselves without 

revealing what it actually is.  

• Differential privacy generates anonymous statistics by adding noise to 
individual records. 

• Synthetic data provides realistic datasets in environments where 
access to large real datasets is not possible. 

In detail 

• Introduction  

• Homomorphic encryption (HE)  

• Secure multiparty computation (SMPC) 

• Private set intersection (PSI) 

• Federated learning 

• Trusted execution environments 

• Zero-knowledge proofs 

• Differential privacy 

• Synthetic data 

• Reference table 
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Introduction 

There are many PETs which you may consider as part of data protection 
compliance. The purpose of this section is to outline some of these, and 

summarise their benefits for compliance, residual risks and implementation 
considerations.  

This section is not:  

• a comprehensive list of PETs;  

• an ICO endorsement of any particular PET; or  

• a deep technical examination of each PET.  

Depending on your circumstances you may need to procure specialist 
expertise beyond this guidance.  

We plan to update this guidance in due course as technology develops to 
reflect changes in the state-of-the-art (eg as new techniques become 
available). 

Homomorphic encryption (HE) 

What is homomorphic encryption and what does it do? 

Homomorphic encryption allows you to perform computations on encrypted 
data without first decrypting it. The computations themselves are also 
encrypted. Once you decrypt them, the result is an output identical to what 
would have been produced if you had performed the computation on the 
original plaintext data. 

There are three types of homomorphic encryption:  

• fully (FHE);  

• somewhat (SHE); and  

• partial (PHE).  

The HE scheme you choose will depend on the nature, scale and the purpose 
of your processing and the level of utility you require to fulfil your purposes. 
You also need to consider the number of different types of mathematical 
operations the HE scheme supports, as well as any limit to how many 
operations the scheme can perform.  

Type of HE When would this type of HE be appropriate? 

FHE FHE allows you to compute any function, as there are no 
limitations in terms of the types of operations it supports or 
their complexity. This flexibility means it provides good 
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protection and utility. However, the more complex the 
operation, the more resource and time may be required. 

SHE SHE permits fewer additions and multiplications on 

encrypted data. The amount is also fixed in advance. This in 
turn means that there is a limit on the types of functions it 
can support. 

PHE PHE provides good performance and protection, but limited 
utility. 

It supports only addition or multiplication operations, but not 
both. As with SHE, there is a limit on the types of (but not 
the number of) functions it can support. 

HE uses a public key-generation algorithm to generate a pair of private and 
public keys, and an evaluation key. The evaluation key is needed to perform 
computations on the encrypted data when it is shared with the entity that 
will perform them. This entity does not need access to the private key to 
perform the analysis. The client, who retains the private key, can then 
decrypt the output obtain the result they require. Any entity that has only 
the public and the evaluation keys cannot learn anything about the encrypted 
data in isolation. 

How does HE assist with data protection compliance? 

In the context of processing, this activity likely counts as “consultation” and 
“use” of personal data, with the encryption itself being “adaptation or 
alteration” of that data. That means the data is still personal data. It has just 
been treated in a particular way that enhances the privacy of those to whom 
it relates.  

HE can help you to ensure: 

• security and confidentiality. It can minimise the risk from data 
breaches if they occur, as personal data remains encrypted at rest, in 
transit and during computation. For example, HE renders the data 
unintelligible to an attacker, the risks to individuals are reduced, and 
therefore no notification to individuals is required under Article 34 of 
the UK GDPR; and 

• accuracy. It provides a level of assurance that the result of a 
computation is the same as if you performed it on unencrypted data – 
providing you ensure the inputs are correct prior to encryption taking 
place. This is because HE does not require you to alter the data in 
other ways (eg, adding “noise” like differential privacy) that mean the 

result may be different from performing the processing on unencrypted 
data.  

HE can also be a building block for other PETs such as private-set 
intersection and federated learning. 
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HE can provide a level of guarantee to a controller when outsourcing a 
computation in an untrusted setting, without the other party ever learning 
about the “original” unencrypted data, the computation, or result of the 
computation. 

What do we need to know about implementing HE? 

FHE can add significant computational overhead (several thousand times 
slower than processing plaintext) and increased communications cost. It may 
therefore not be appropriate if your processing involves large volumes of 
personal data.  

FHE’s performance deficit is reducing due to technological progress – for 
example, increasing computational power and efficiency improvements of the 
FHE algorithms. This means challenges relating to computational overhead 
and cost are likely to become less significant over time, and FHE may in turn 
become more viable in the context of large-scale processing operations. 
However, at present FHE performs better for some types of computation like 
addition operations, but it is still not feasible for many types of processing. 

Other schemes such as PHE and SHE are less affected by overhead but are 
more limited in terms of mathematical operations they support.  

What are the risks associated with the use of homomorphic 

encryption? 

HE has similar risks to encryption more generally. You need to ensure that 
you: 

• choose the right algorithm; 

• choose the right key size;  

• choose the right software; and 

• keep the key secure.  

This is particularly important with HE because the secret key can be used to 
decrypt the outputs. You must therefore use appropriate technical and 
organisational measures to keep it secure. You must also ensure you have 
processes in place to generate a new key immediately in case the original is 
compromised. 

The security of most HE schemes is based on hard mathematical problems 
which are currently considered to be secure even against quantum 
computers. You should monitor the effectiveness of your HE scheme as 
decryption technologies continue to develop. 

There are also off-the-shelf HE products and services, including open-source 
solutions. These can help you to implement HE if you do not have the 
sufficient technical expertise. For example, these products and services can 
provide things like: 
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• the underlying cryptographic operations; 

• application programming interfaces (APIs);  

• key generation; 

• encryption and decryption; and 

• particular addition or multiplication functions. 

Additionally, industry efforts to standardise HE schemes are ongoing. You 
should monitor the effectiveness of the solution you choose as technologies 
continue to develop. 

Further reading – ICO guidance 

For more information on protecting encryption keys, read our guidance on 
encryption. 

For more information about assessing identifiability, see the identifiability 
section of our anonymisation guidance. 

 

Further reading outside this guidance 

The current version of the community standard for homomorphic encryption 

includes further guidance on best practices. 

OpenMined’s blog on "What is homomorphic encryption?" provides further 
information on the mathematical operations that underpin HE. 

This link provides a curated list of Homomorphic Encryption libraries, 
software and resources 

Secure multiparty computation (SMPC) 

What is secure-multiparty computation (SMPC) and what does it do? 

SMPC is a protocol (a set of rules for transmitting data between computers) 
that allows at least two different parties to jointly perform processing on 
their combined data, without any party needing to share its all of its data 
with each of the other parties. All parties (or a subset of the parties) may 
learn the result, depending on the nature of the processing and how the 
protocol is configured. 

SMPC uses a cryptographic technique called “secret sharing”, which refers to 

the division of a secret and its distribution among each of the parties. This 
means that each participating party’s data is split into fragments to be 
shared with other parties. 

Each party’s data cannot be revealed to the others unless some proportion of 
fragments of the data of each of the parties are combined. As this would 

https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/encryption/how-should-we-implement-encryption/
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/encryption/how-should-we-implement-encryption/
https://ico.org.uk/media/about-the-ico/documents/4018606/chapter-2-anonymisation-draft.pdf
https://ico.org.uk/media/about-the-ico/documents/4018606/chapter-2-anonymisation-draft.pdf
https://homomorphicencryption.org/standard/
https://blog.openmined.org/what-is-homomorphic-encryption/
https://github.com/jonaschn/awesome-he
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involve compromising the data security of a number of different parties, in 
practice it is unlikely to occur. This limits the risks of exposure through 
accidental error or malicious compromise and helps to mitigate the risk of 
insider attacks. 

Example 

Three organisations (Party A, Party B and Party C) want to use SMPC to 
calculate their average expenditure. Each party provides data about their 
own expenditure – this is the “input” that will be used for the calculation. 

SMPC splits each party's information into three randomly-generated "secret 
shares". For example, Party A's input – its own total expenditure – is 
£10,000. This is split into secret shares of £5,000, £2,000 and £3,000. Party 
A keeps one of these shares, distributes the second to Party B and the third 
to Party C. Parties B and C do the same with their input data. 

 

Party Input data 
Secret share 
1 (to be kept) 

Secret share 
2 (to be 
distributed) 

Secret share 
3 (to be 
distributed) 

 

 
A £10,000 £5,000 £2,000 £3,000 

 

 
B £15,000 £2,000 £8,000 £5,000 

 

 
C £20,000 £7,000 £4,000 £9,000 

 

When this process is complete, each party has three secret shares. For 
example, Party A has the secret share it retained from its own input, along 
with a secret share from Party B and another from Party C. The secret shares 
cannot reveal what each party's input was – ie Party A does not learn the 
total expenditure of Parties B or C, and so on. 

Each party then adds together their secret shares. This calculates a partial 
result both for each party and the total expenditure of all three. The SMPC 
protocol then divides the total by the number of parties – three, in this case 
– giving the average expenditure of each: £15,000. 

 

Party 
Input 
data 

Secret 
share 
kept 

Secret 
share 
received 

Secret 
share 
received 

Partial 
sum 

 

 
A £10,000 £5,000 £4,000 £5,000 £14,000 

 

 
B £15,000 £2,000 £2,000 £9,000 £13,000 

 

 
C £20,000 £7,000 £8,000 £3,000 £18,000 
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Total expenditure (sum of 

partials) 
£45,000 

 

 
Average expenditure (total 

divided by number of parties) 
£15,000 

 

No single party is able to learn what the other's actual expenditure is. 

How does SMPC assist with data protection compliance? 

SMPC is a way to ensure that the amount of data you share is limited to what 
is necessary for your purposes. It can help you to demonstrate: 

• the security principle, as the inputs of other parties are not revealed 
and internal or external attackers cannot easily change the protocol 
output; and 

• the data minimisation principle, as no one should learn beyond what 
is absolutely necessary. Parties should learn their output and nothing 
else. 

SMPC can also help to minimise the risk from personal data breaches when 
performing processing with other parties, as the shared data is not stored 

together, and also when data is being processed by separate parts of the 
same organisation.  

If your purposes require you to provide personal data to the SMPC 
computation, you need to assess whether the data you receive from the 
output is personal data. You should consider applying differential privacy to 
the output to further reduce risks of identifiability. 

What do we need to know about implementing SMPC? 

SMPC is an evolving and maturing concept. It may not be suitable for large-
scale processing activities in real-time, as it can be computationally 
expensive. There are some other open research problems, including the use 
of SMPC for replacing missing data with substituted values, eliminating 
duplicate copies of repeating data and record linkage where matches in data 
sets to be joined are inexact. 

Currently, effective use of SMPC requires technological expertise and 
resources. This may mean that you cannot implement SMPC yourself. 
However, SMPC has different deployment models, meaning that it may be 
possible for you to use it. These include: 

• the delegated model, which outsources the computations to a trusted 
provider. This can also be a good approach if you are reluctant to 
participate in the protocol due to security and confidentiality concerns 
– for example, the risk of collusion between other parties or 
mismatched levels of security between parties; and 
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• the hybrid model, which involves an external provider running one of 
the servers, while you run the other in-house using the same technical 
and organisational measures. This approach still requires a solid 
understanding of the technology. 

Beyond a certain point, it may be possible for the input data to be 
reconstructed (eg by one or more of the parties, or an attacker). It is 
therefore important to determine what the appropriate “threshold” is for the 
number of secret shares your use of SMPC involves.  

The threshold for reconstruction influences the risk of collusion and re-
identification. The required threshold depends on the threat model used. A 
threat model which requires a greater proportion of the parties to be honest 
poses a higher risk than one which requires a lower proportion. For example, 
if all but one parties must be honest, then compromise of a single party 
would undermine the security of the protocol. If only half of the parties are 
required to be honest, then this would require further parties to be 
compromised or behave maliciously. 

There are several parameters that you should consider when you determine 
the appropriate number of shares. These include: 

• the number of parties involved; 

• the underlying infrastructure you intend to use;  

• the availability of that infrastructure; and 

• the calculations you intend to make and the input data required. 

To avoid collusion between parties, you should ensure appropriate trust 
mechanisms are in place, particularly if multiple parties involved in the 
process use the same underlying infrastructure. These may include robust 
access controls, logging and auditing mechanisms and a strong contractual 
framework.  

You may need to obtain further expertise in secret sharing when assessing 
the context and purpose for your use of SMPC. 

What are the risks associated with the use of SMPC? 

SMPC protocols are designed for a variety of threat models that make 
assumptions about an attacker’s capabilities and goals. The models are 
based on allowed actions that dishonest parties are allowed to take without 
affecting its privacy properties. This is an important underlying concept 
behind the design of SMPC. 

An SMPC protocol can be compromised, resulting in reconstruction of the 
input data or the results of the computation being incorrect. For example, an 
external entity or a participating party can act in bad faith. In the SMPC 
context these are known as ‘corrupted parties’.  
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The security model appropriate for your circumstances depends on the level 
of inherent risk of a malicious party learning something about an individual, 
or corrupting their inputs such that it may have a detrimental effect on an 
individual.  

Generally, stronger threat models require more computational resources. It 
is good practice to perform intruder testing on the SMPC protocol operation 
using the threat model assumptions for a given adversary, as provided in the 
design of the protocol. For example, you should test the impact of corrupted 
inputs on the computation and the security of the communications channels 
between the parties. 

By design, using SMPC means that data inputs are not visible during the 
computation, so you need to carry out accuracy checks. You can do this in 
several ways, such as: 

• ensuring the design has measures in place to protect against 
corruption of the input values (eg a process for checking the input 
values and contractual requirements on accuracy); 

• ensuring that data validation and correction is part of the SMPC 
protocol you choose, and that both processes are executed on the 
inputs; 

• checking the output after the computation is complete, so you can 
evaluate whether the result is true (this process is known as “sanity 

checks”);  

• bounds checking to ensure values are not corrupted; and 

• ensuring technical and organisational measures are in place (eg robust 
access controls, logging and auditing mechanisms to mitigate the risk 
of collusion between parties).  

SMPC protects data during the computation but does not protect the output. 
Where the output is personal data, you should implement appropriate 
encryption measures for data at rest and in transit to mitigate the risk of 
personal data being compromised.  

Further reading – ICO guidance 

Read the section of this guidance on identifiability for more information on 
the motivated intruder test and assessing the identifiability of personal data. 

 

Further reading outside this guidance 

The publications below provide additional information on implementation 
considerations, threat models and use cases for SMPC. 

https://ico.org.uk/media/about-the-ico/documents/4018606/chapter-2-anonymisation-draft.pdf
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For an extensive overview of SMPC, including an assessment of various 
methods and a summary of what problems it can solve, see “A Pragmatic 
Introduction to Secure Multi-Party Computation” (external link, PDF).  

ENISA’s 2021 report “Data Pseudonymisation: Advanced Techniques and Use 
Cases” summarises SMPC.  

Private set intersection (PSI) 

What is private set intersection (PSI) and what does it do? 

PSI is a specific type of SMPC which allows two parties, each with their own 
dataset, to find the “intersection” between them (ie the elements the two 
datasets have in common), without revealing or sharing those datasets. It 
can also be used to compute the size of the intersection or aggregate 
statistics on it.  

The most common type of PSI is the client-server subtype, where only the 
client learns the PSI result. The client can be the user of a PSI service or the 
party who will learn the intersection or intersection size (the number of 
matching data points between the two parties), depending on the purposes. 
The server hosts the PSI service and holds data which the client can query to 
determine if it holds any matching data with the server. 

PSI can work in two ways: 

• the data owners interact directly with each other and need to have a 
copy of their set at the time of the computation, known as traditional 
PSI; or 

• the computation of PSI or the storage of sets can be delegated to a 
third-party server, known as delegated PSI. 
 

 
 

https://www.cs.virginia.edu/~evans/pragmaticmpc/pragmaticmpc.pdf
https://www.cs.virginia.edu/~evans/pragmaticmpc/pragmaticmpc.pdf
https://www.enisa.europa.eu/publications/data-pseudonymisation-advanced-techniques-and-use-cases
https://www.enisa.europa.eu/publications/data-pseudonymisation-advanced-techniques-and-use-cases
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The most efficient PSI protocols are highly scalable and use a variety of 
methods, including other privacy enhancing techniques such as hashing or 
homomorphic encryption.  

How does PSI assist with data protection compliance?  

PSI can help to achieve data minimisation as no data is shared beyond 
what each party has in common.  

PSI offer the same benefits as other SMPC protocols, such as: 

• no single party being able to have a ‘global view’ of all combined 
identifiable input data from both parties; 

• the parties involved in each stage of the processing receiving the 
minimum amount of information tailored to their requirements, 
preventing purpose creep; and 

• PSI protocols being modified to show only anonymous aggregate 
statistics from the intersection, depending on the requirements of the 
sharing. 

Example – Using Private Set Intersection 

Two health organisations process personal data about individuals’ health. 

Organisation A processes data about individuals’ vaccination status, while 
Organisation B processes data about individuals’ specific health conditions. 

Organisation B needs to determine the percentage of individuals with 
underlying health conditions who have not been vaccinated.  

Ordinarily, this may require Organisation A to disclose its entire dataset to 
Organisation B so the latter can compare with its own. By using PSI, it does 
not need to do so. In fact, both organisations can minimise the amount of 
personal data processed while still achieving their purposes. 

A third party provides the PSI protocol. While the computation involves 
processing of the personal data that both organisations hold, the output of 
that computation is the number of individuals that are not vaccinated who 
have underlying health conditions. Organisation B therefore only learns this, 
and does not otherwise process Organisation A’s dataset directly.  

This minimises the personal data needed to achieve the purpose. This in turn 
enhances individuals’ privacy.  

What are the risks associated with the use of PSI? 

PSI introduces some risks that you need to mitigate. These include: 

• risks of re-identification from inappropriate intersection size or over-
analysis; and 
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• the potential for one or more of the parties to use fictional data in an 
attempt to reveal information about individuals.  

You should choose an appropriate intersection size. This is because a low 

intersection size may allow the party computing the intersection to single 
out individuals within that intersection in cases where an individual’s record 
has additional information associated with it (eg numerical values for hospital 
visits). These values can be added together and used for publishing 
aggregates (known as the intersection sum). 

If an identifier has a unique associated value, then it may be easy to detect if 
that identifier was in the intersection by looking at the intersection sum and 
whether one of the identifiers has a very large associated value compared to 
all other identifiers. In that case, if the intersection sum is large, it is possible 
to infer that that identifier was in the intersection.  

The intersection sum may also reveal which identifiers are in the intersection, 
if the intersection is too small. This could make it easier to guess which 
combination of identifiers could be in the intersection in order to obtain a 
particular intersection sum. Deciding on an appropriate “threshold” for 
intersection size and removing any outliers is therefore important to mitigate 
this risk.  

Once you agree an intersection size, you can set the computation process to 
automatically terminate the PSI protocol if it is likely to result in a number 

below this. Additionally, halving the size of the intersection as well as the 
size of the inputs can provide additional mitigations.  

Re-identification can also happen due to over-analysis. This involves 
performing multiple intersection operations which may either reveal or 
remove particular individuals from the intersection. In other words, this can 
lead to re-identification through singling out. Rate-limiting can be an 
effective way of mitigating this risk. This type of technical measure should be 
defined in any data sharing agreement.  

Some PSI implementations may not ensure input is checked (ie that 
parties use real input data as opposed to non-genuine or fictional data). 
Others may not prevent parties from arbitrarily changing their input after the 
computation process begins.  

This is an issue because it allows a malicious party to reveal data in the 
intersection they do not actually have mutually in common with the other 
party. If the data is personal data, there is a risk that the malicious party 
could access sensitive information, which may have detrimental effects to 
individuals. 

You can mitigate this risk by ensuring that the inputs are checked and 
validated, and independently audited. 

If you and other organisations use PSI to match individuals from your 
separate databases, you also need to ensure you maintain referential 
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integrity to ensure each record is matched accurately. Linking across 
datasets becomes more difficult when there may be variation formats in 
which the data items are held. There may be a risk that some individuals are 
not included or included by mistake. It is possible to reduce the risk of 

inaccurate matching by a number of techniques, including tokenisation and 
hashing. For example, if a common identifier is hashed by both parties, then 
the hashes will only match if the data is an exact match for both parties. 

Federated learning 

What is federated learning and what does it do? 

Federated learning (FL) is a technique which allows multiple different parties 
to train AI models on their own data (‘local’ models). They then combine 
some of the patterns that those models have identified (known as 
“gradients”) into a single, more accurate ‘global’ model, without having to 
share any training data with each other. Federated learning has similarities 
with SMPC. For example, the processing involves multiple entities. However, 
FL is not necessarily a type of SMPC. 

There are two approaches to federated learning: centralised design and 
decentralised design.  

In centralised FL, a co-ordination server creates a model or algorithm, and 

duplicate versions of that model are sent out to each distributed data source. 
The duplicate model trains itself on each local data source and sends back 
the analysis it generates. That analysis is synthesised with the analysis from 
other data sources and integrated into the centralised model by the co-
ordination server. This process repeats itself to constantly refine and improve 
the model.  

 
 

https://ico.org.uk/for-organisations/guide-to-data-protection/key-dp-themes/guidance-on-ai-and-data-protection/glossary/


 

  24 

In decentralised FL, there is no central co-ordination server involved. Each 
participating entity communicates with each other, and they can all update 
the global model directly. The decentralised design has some advantages 
since processing on one server may bring potential security risks or 

unfairness and there is no single point of failure.  
 

 

 

How does FL assist with data protection compliance? 

FL can help with data protection compliance in several ways, including: 

• minimising the personal data processed during a model’s training 
phase; 

• providing an appropriate level of security (in combination with other 
PETs); and  

• minimising the risk arising from data breaches, as no data is held 
together in a central location which may be more valuable to an 
attacker. 

FL also can reduce risk in some use cases, but the addition of other PETs 
further mitigates the risk of attackers extracting or inferring any personal 
data. 

What do we need to know about implementing federated learning? 

As FL regularly transfers analysis into the global model, it can incur 
significant computational cost. This may make it unusable for large-scale 
processing operations. You should consider whether the training and testing 
time and memory usage is acceptable for your aims. This will depend on the 
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scale of the processing as processing time, and will increase proportionally as 
the size of the dataset increases.  

You should also consider: 

• the choice of encryption algorithm;  

• the parameter settings to be specified when reporting the training or 
testing time and required memory; and  

• analysing the FL algorithm to determine its resource usage, so that 
you can estimate the resource requirements. 

What are the risks associated with the use of FL? 

When you use FL techniques, local machine learning (ML) models can still 
contain personal data. For example, the models may preserve features and 
correlations from the training data samples which could then be extracted or 
inferred by attackers.  

The information shared as part of FL may indirectly expose private data used 
for local training of the ML model – for example, by: 

• model inversion of the model updates;  
• observing the patterns that those models have identified (known as 

‘gradients’); or  

• other attacks such as membership inference. 

The nature of FL means the training process is exposed to multiple parties. 
This can increase the risk of leakage via reverse engineering if an attacker 
can observe model changes over time, observe specific model updates (ie a 
single client update), or manipulate the model. 

To protect the privacy of your training dataset and local model parameters 
which are exchanged with the co-ordination server, you should combine FL 
with other PETs. For example, you can use: 

• SMPC to protect parameters sent from the clients to ensure that they 
do not reveal their inputs. For example, the Secure Aggregation 
protocol (a form of SMPC), has already been integrated into Google’s 
TensorFlow Federated framework; 

• homomorphic encryption to encrypt local model parameters from all 
participants. The coordination server receives an encrypted global 
model which can only be decrypted if a sufficient number of local 
models have been aggregated;  

• differential privacy, to hide the participation of a user in a training 
task. If a model depends on the data of any particular individual used 
to train it, this increases the risk of singling out that individual. You can 
use differential privacy to add noise and hide the fact that a particular 
individual’s data was used in the training task. This makes it less 
certain which data points actually relate to a particular individual. This 

https://ico.org.uk/for-organisations/guide-to-data-protection/key-dp-themes/guidance-on-ai-and-data-protection/glossary/
https://ico.org.uk/for-organisations/guide-to-data-protection/key-dp-themes/guidance-on-ai-and-data-protection/glossary/
https://ico.org.uk/for-organisations/guide-to-data-protection/key-dp-themes/guidance-on-ai-and-data-protection/glossary/
https://ico.org.uk/for-organisations/guide-to-data-protection/key-dp-themes/guidance-on-ai-and-data-protection/how-should-we-assess-security-and-data-minimisation-in-ai/#whattypesof
https://ico.org.uk/for-organisations/guide-to-data-protection/key-dp-themes/guidance-on-ai-and-data-protection/how-should-we-assess-security-and-data-minimisation-in-ai/?q=gradient#whattypesof
https://www.tensorflow.org/federated


 

  26 

is more effective if the number of individuals in the dataset is large; 
and 

• secure communications protocols (eg TLS) between clients (in the 

decentralised model) and between clients and the server (in the 
centralised model) to prevent man-in-the-middle attacks, 
eavesdropping and tampering on the connection between the clients 
and co-ordination server. 

Further reading – ICO guidance  

See the ‘How should we assess security and data minimisation in AI’ section 
of our Guidance on AI and data protection for further information on security 
risks posed by AI systems and available mitigation techniques. 

Trusted execution environments 

What is a trusted execution environment and what does it do? 

A trusted execution environment (TEE) is a secure area inside a computing 
device’s central processing unit (CPU). It allows code to be run, and data to 
be accessed, in a way that is isolated from the rest of the system.  

TEEs are made up of software and hardware components. TEEs are isolated 
from the rest of the system, so that the operating system or hypervisor (a 
process that separates a computer’s operating system (OS) and applications 
from the underlying physical hardware) cannot read the code in the TEE. 

TEEs provide security services including: 

• integrity of execution;  

• secure communication with the applications running in the main 
operating system; 

• trusted storage; 

• key management; and  

• cryptographic algorithms.  

Applications running in the TEE can only directly access their own data. 

Using a TEE provides you with a higher level of trust in validity, isolation and 
access control in the data and code stored in this space, when compared to 
the main operating system. In turn, this asserts that the applications running 

inside that space are more trustworthy. 

TEEs do not suffer from a loss of utility or additional overhead due to 
encryption. This is because the actual computation is performed on 
unencrypted data, and no noise needs to be added to it. 

https://ico.org.uk/for-organisations/guide-to-data-protection/key-dp-themes/guidance-on-ai-and-data-protection/how-should-we-assess-security-and-data-minimisation-in-ai/
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TEEs can be used for many applications, including: 

• supporting biometric authentication methods (facial recognition, 
fingerprint sensor and voice authorisation). A TEE is used to run the 

matching engine and the associated processing required to 
authenticate the user. The TEE protects the biometric data, essentially 
forming a “buffer” against any non-secure apps located in mobile 
OSes. 

• in a cloud context, to ensure that the computation is “securely” 
outsourced. This means that the provider cannot learn anything about 
the data involved and assure certain processing occurred, the integrity 
of systems, that configuration and management policies are applied 
and that billing accurately reflects the resources consumed; 

• enabling secure multi-party computation on untrusted platforms; 

• privacy in large scale data analytics and in enabling more privacy-
aware machine learning ‘as a service’; and 

• Internet of Things (IoT) devices.  

How does TEEs assist with data protection compliance? 

TEEs ensure processing is limited to a specific part of a CPU with no access 
available to external code. This ensures that the data is protected from 
disclosure and provides a level of assurance of data integrity, data 

confidentiality, and code integrity. In turn, this can help you to comply with 
both the security principle and the requirements of ‘data protection by 
design’, depending on your context.  

In addition, TEEs can assist with your data governance. For example, they 
can provide evidence of the steps you take to mitigate risks and enable you 
to demonstrate that these were appropriate. This can help you to comply 
with the accountability principle.  

TEEs also have wider benefits. For example, they can provide strong 
manufacturing and supply chain security. This is because TEE 
implementations embed devices with unique identities via roots of trust (ie a 
source that can always be trusted within a cryptographic system). These 
enable key stakeholders in the supply chain to identify whether the device 
they are interacting with is authentic. 

What are the risks associated with the use of TEEs? 

Scalability can be an issue for large-scale processing due to a lack of 
available memory, as only limited data can be processed at any one time. 

The combined use of TEEs with other PETs (eg machine learning using 
SMPC), is an still an open research topic.  

Processing in shared environments may pose higher risks. These are 
discussed in more depth in the following section. 

https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/principles/accountability-principle/
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You should be aware of published security flaws on TEEs. For example: 

• ‘side-channel’ attacks – an attack based on extra information that can 
be gathered from way the TEE communicates with other parts of a 

computer. The most common in the context of TEEs are timing attacks. 
Attackers can learn information about processes sharing the same 
CPU, such as memory access patterns of the program that are revealed 
whenever data is transferred from the TEE to the main memory; and 

• timing attacks can leak cryptographic keys or infer information about 
the underlying operation of the TEE. These attacks measure the access 
times to a series of specific locations in the computers memory, and 
use the information to infer whether or not a user has accessed data in 
related memory locations. 

Additionally, TEE hardware only provides particular security properties. The 
software or system design must properly use these to benefit from the 
security properties. Insecure or buggy code within a TEE will often not 
mitigate security risks. If you are writing your own code to use within a TEE, 
you should ensure that programs are carefully written and audited to ensure 
that nothing observable about their execution could leak security-impacting 
sensitive information, for example information regarding memory access 
patterns to personal data. 

Further reading outside this guidance 

Commercial TEE solutions are widely available, for example: 

• Microsoft Azure confidential computing; and 

• Amazon AWS Nitro Enclaves; 

For more information on TEEs and confidential computing see: 

• Microsoft’s “What is confidential computing?”, which provides additional 
information on the benefits and use cases for TEEs; 

• The Confidential Computing Consortium’s publications “A Technical 
Analysis of Confidential Computing” (external link, PDF); and: 
“Confidential Computing: Hardware-Based Trusted Execution for 
Applications and Data” (external link, PDF) 

See the IEEE publication “On the Spectre and Meltdown Processor Security 
Vulnerabilities” (external link, PDF) for further information on particular 
vulnerabilities in some types of CPUs. 

Zero-knowledge proofs 

What is a zero-knowledge proof and what does it do? 

A zero-knowledge proof (ZKP) refers to any protocol where a prover (usually 
an individual) is able to prove to another party (verifier) that they are in the 

https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://aws.amazon.com/ec2/nitro/nitro-enclaves/
https://docs.microsoft.com/en-us/azure/confidential-computing/overview
https://confidentialcomputing.io/wp-content/uploads/sites/85/2022/01/CCC-A-Technical-Analysis-of-Confidential-Computing-v1.2.pdf
https://confidentialcomputing.io/wp-content/uploads/sites/85/2022/01/CCC-A-Technical-Analysis-of-Confidential-Computing-v1.2.pdf
https://confidentialcomputing.io/wp-content/uploads/sites/85/2021/03/confidentialcomputing_outreach_whitepaper-8-5x11-1.pdf
https://confidentialcomputing.io/wp-content/uploads/sites/85/2021/03/confidentialcomputing_outreach_whitepaper-8-5x11-1.pdf
https://par.nsf.gov/servlets/purl/10091756
https://par.nsf.gov/servlets/purl/10091756
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possession of a secret (information they know but is unknown to the 
verifier).  

For example, a prover can prove their age without revealing what it actually 

is. The prover can use a ZKP to prove to the verifier that they know a value X 
(eg proof they are over 18), without conveying any information to the verifier 
apart from the fact that the statement is true. The verifier challenges the 
prover such that the responses from the prover will convince the verifier if 
the X is true (ie that the prover is over 18). 
 

 

Existing applications of ZKPs include: 

• confirmation a person is of a certain age (eg legally able to drive), 
without revealing their birth date;  

• proving someone is financially solvent, without revealing any further 
information regarding their financial status; or 

• demonstrating ownership of an asset, without revealing or linking to 
past transactions; and 

• to support biometric authentication methods such as facial recognition, 
fingerprint sensor and voice authorisation on mobile devices. 

ZKPs can be interactive, (ie require the service or verifier to interact with the 
prover), or non-interactive.  

How do ZKPs assist with data protection compliance? 

If you use a ZKP service, the information you receive (eg proof that an 
individual is over a particular age), is likely to still relate to an individual 

depending on the nature of the query. Therefore, it will still be personal data. 

ZKPs can be a used to help you achieve data protection compliance with: 

• the data minimisation principle as they limit the amount of personal 
data to what is required; and 
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• the security principle as confidential data such as actual age does 
not have to be shared with other parties. 

How does the use of ZKPs impact the ability to achieve the purpose 

of the processing? 

The algorithms and functions underpinning ZKPs provide a probable certainty 
as to whether the information is correct or not. This means the secret can be 
proved with a very high degree of certainty. When applying a ZKP to the 
design of a processing operation, you should assess whether this uncertainty 
reaches sufficiently low value for the risk to be accepted in the framework of 
that specific processing. 

What are the risks associated with the use of ZKPs? 

Poor implementation of the protocol can cause weaknesses such as code 
bugs, compromise during deployment, attacks based on extra information 
that can be gathered from the way the ZKP protocol is implemented and 
tampering attacks. You should ensure that the technical and organisational 
measures you use are consistent with the underlying protocol specification, 
and appropriate measures have been taken to address any security risks. 

Further reading outside this guidance 

See the current ZKP community reference document (external link, PDF) for 
more information regarding advanced ZKP techniques, including their 
advantages, disadvantages and applications.  

Differential privacy 

What is differential privacy and what does it do? 

Differential privacy is a method for measuring how much information the 
output of a computation reveals about an individual. It is based on the 
randomised injection of “noise”. Noise is a random alteration of data in a 
dataset so that values such as direct or indirect identifiers of individuals are 
harder to reveal. An important aspect of differential privacy is the concept of 
“epsilon” or ɛ, which determines the level of added noise. Epsilon is also 

known as the “privacy budget” or “privacy parameter”. 

Noise allows for ‘plausible deniability’ of a particular individual’s personal 
data being in the dataset (ie it is not possible to determine with confidence 
that information relating to a specific individual is a present in the data).  

There are two types of differential privacy available:  

• global differential privacy, which adds noise during aggregation; and 

https://docs.zkproof.org/reference.pdf
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• local differential privacy, where each user adds noise to individual 
records before aggregation. 

Global (or centralised) differential privacy involves the “aggregator” having 

access to the real data. Each user sends data to the aggregator without 
noise. The aggregator then applies a differentially private mechanism by 
adding noise to the output (eg a response to a database query). The noise is 
added only once, at the end of the process before sharing it with the third 
party. The main disadvantage of this approach is the requirement for the 
central aggregator to access the real data. All the users have to trust the 
aggregator to act appropriately and protect the privacy of individuals. 
 

 
 

Example 

Global differential privacy was used by the US Census Bureau when collecting 
personal data from individuals for the 2020 US Census to prevent matching 
between an individual’s identity, their data, and a specific data release. The 
US Census bureau was considered a trusted aggregator, in other words – the 
data was handled in line with the expectations of the participating individuals 
with robust controls in place.  

Local differential privacy has the individual users applying the mechanism 
before they send anything to the aggregator. Noise is added to the individual 
(input) data points. The aggregator receives “noisy” data – this addresses 
the trust risk of global differential privacy as the real data is not shared with 
the aggregator. Since each user must add noise to their own data, the total 
noise is much larger than global differential privacy. Local differential privacy 
requires many more users to get useful results. The key difference between 
the two models is that the global model leads to more accurate results with 
the same level of privacy protection, as less noise is added. 
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Example  

A smartphone provider wants to know the average number of minutes a 
individual uses their device within a given month without revealing the exact 
amount of time.  

Instead of asking the exact amount of time, the individuals device adds any 
random value as noise (eg in the range of -50 to +50 to the actual number 
of minutes they use their device and give the smartphone provider just the 
resultant sum of it. That is if an individual had a monthly usage of 300 
minutes by adding a random number of -50 to it, (300 + (-50)), they provide 
just the noised result, which is 250 minutes in this case. 

The diagram below shows the difference between a real-world computation 

(where a specific individual’s data is included in the processing) and an opt-
out scenario (where the individual’s data is not included). Epsilon (ε) is the 
maximum distance between a query on a database (real-world computation) 
and the same query on a database with a single entry added or removed.  

Small values of ε provide very similar outputs when given similar inputs, and 
therefore provide higher levels of privacy as more noise is added. Therefore, 
it is more difficult to distinguish whether an individual’s data is present in the 
database. Large values of ε allow less similarity in the outputs, as less noise 
is added and therefore it is easier to distinguish between different records in 
the database. 

Practical applications using local DP often use higher values of epsilon than 
global DP due to the higher amount of noise required. If anonymous 
information is required as output, epsilon can be set such that that the 
relative difference in the result of two the scenarios is so small that it is 
unlikely anyone could single out or infer, with confidence, anything about a 
specific individual in the input. 
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How does differential privacy assist with data protection compliance? 

Differential privacy can be used to anonymise data for other purposes, 
providing an appropriate level of noise is added. Anonymous aggregates can 
be generated from personal data or it can be used to query a database to 
provide anonymised statistics. 

Both models of differential privacy are able to provide anonymous 
information as output, providing a sufficient level of noise is added to the 
data. Local differential privacy adds noise to the individual (input) data points 
to provide strong privacy protection of sensitive attributes. As the noise is 

added to each individual contribution, this will result in less accurate, lower 
utility data than global differential privacy. 

Any original data retained by the aggregator in the global model or the 
individual parties in the local model would be personal data in their hands. 
This also applies to any additional information that may reidentify. However, 
in either model, the output may not be personal data in the hands of another 
party.  

What do we need to know about implementing differential privacy? 

Using differential privacy can result in poor utility due to noise addition. It is 
challenging to generate differentially private outputs that provide strong 
protection and good utility for different purposes. Differential privacy can 
however be useful in the context of statistical analysis and broad trends, 
rather than for detecting anomalies or detailed patterns within data.  

What are the risks associated with the use of differential privacy? 

Data treated by a differentially private algorithm does not necessarily result 
in anonymous information. If you do not configure differential privacy 

properly, there is a risk of personal data leakage from a series of different 
queries. For example, if the privacy budget is poorly configured, an attacker 
can accumulate knowledge from multiple queries, to re-identify an individual. 
Tuning differential privacy must be done on a case-by-case basis. You should 
consider obtaining expert knowledge for best results. Your privacy budget 
assessment should consider: 



 

  34 

• the overall sensitivity of the data, which can be obtained by measuring 
the specific weight of a record on the result of the query; 

• the nature of the attributes; 

• the type of query made; 

• the size of the population in the database; 

• the number of queries that are likely to be made over the data 
lifecycle; and  

• whether you set the privacy budget per user or globally (or both). 

When setting an appropriate privacy budget to enforce limits on the number 
of queries made, you should consider the risk of unintended disclosure of 
sensitive information in any query to be performed on the data. You should 
also consider contractual controls to mitigate malicious parties making similar 
queries and then sharing them between each other, to increase the total 
amount of information each one holds. 

You should consider whether it is likely that: 

• an attacker could accumulate knowledge on an individual from the 
inputs or intermediate results,  

• an attacker could accumulate knowledge from multiple queries; and 

• malicious parties could collude to pool the results the results of their 
queries, and increase their collective knowledge of the dataset. 

If there is still some risk, you should adjust the privacy budget and re-assess 
the risk until the risks are reduced to a remote level. 

Further reading outside this guidance 

For more information on the concept of differential privacy, see Harvard 
University’s publication “Differential Privacy: A Primer for a Non-technical 
Audience” (external link, PDF). Harvard University also has a number of open 
source toolkits and resources available, such as its OpenDP Project. 

For more information on differential privacy and the epsilon value, see 
Purdue University’s publication “How Much Is Enough? Choosing ε for 
Differential Privacy” (external link, PDF).  

The Government Statistical Service has an introduction on differential privacy 
for statistical agencies, accessible on request from the GSS website. 

For an analysis of differential privacy in the context of singling out, linkability 
and inferences see section 3.1.3 of the Article 29 Working Party’s Opinion 

05/2014 on anonymisation techniques (external link, PDF).  

OpenMined’s blog on “Local vs global differential privacy” provides a useful 
description of the two types along with some code examples.  

https://privacytools.seas.harvard.edu/files/privacytools/files/pedagogical-document-dp_new.pdf
https://privacytools.seas.harvard.edu/files/privacytools/files/pedagogical-document-dp_new.pdf
https://opendp.org/
https://git.gnunet.org/bibliography.git/plain/docs/Choosing-%CE%B5-2011Lee.pdf
https://git.gnunet.org/bibliography.git/plain/docs/Choosing-%CE%B5-2011Lee.pdf
https://gss.civilservice.gov.uk/policy-store/privacy-and-data-confidentiality-methods-a-national-statisticians-quality-review-nsqr/#differential-privacy
https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2014/wp216_en.pdf
https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2014/wp216_en.pdf
https://blog.openmined.org/basics-local-differential-privacy-vs-global-differential-privacy/
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Synthetic data 

What is synthetic data and what does it do? 

Synthetic data is ‘artificial’ data generated by data synthesis algorithms, 
which replicate patterns and the statistical properties of real data (which may 
be personal data). It is generated from real data using a model trained to 
reproduce the characteristics and structure of that data. This means that 
when you analyse the synthetic data, the analysis should produce very 
similar results to analysis carried out on the original real data. 

It can be a useful tool for training AI models in environments where access 
to large datasets is not possible.  

There are two main types of synthetic data: 

• “partially” synthetic data, which synthesises only some variables of the 
original data; and  

• “fully” synthetic data, which synthesises all variables. 

How does synthetic data assist with data protection compliance? 

Synthetic data requires real data to generate it, which may involve the 
processing of personal data. However, data synthesis may allow large 
datasets to be generated from small datasets. This can help you comply with 

the data minimisation principle as it reduces or eliminates the processing of 
personal data.  

You should consider synthetic data for generating non-personal data in 
situations where you do not need to, or cannot, share personal data. If you 
are generating synthetic derived from personal data, any inherent biases in 
the data will be carried through. You should:  

• ensure that you can detect and correct bias in the generation of 
synthetic data, and ensure that the synthetic data is representative; 
and  

• consider whether you are using synthetic data to make decisions that 
have consequences (ie legal or health consequences) for individuals. 

What do we need to know about implementing synthetic data? 

Generating synthetic data is an active research area and, at present, it may 
not be a viable solution for many data processing scenarios. Synthetic data is 
being considered as a type of statistical disclosure control method for open 
data release. 

What are the risks associated with the use of synthetic data? 

The degree to which synthetic data is an accurate proxy for the original data 
depends on the utility of the method and model. The more that the synthetic 
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data mimics real data, the greater the utility it has. At the same time, it may 
be more likely to reveal individuals’ personal data. 

Assessing re-identification risk involved with synthetic data is an ongoing 

area of development. You should consider whether the synthetic data you 
generate is personal data. You should focus on the extent to which 
individuals are identified or identifiable in the synthetic data, and what 
information about them would be revealed if identification is successful.  

Some synthetic data generation methods have been shown to be vulnerable 
to model inversion attacks. Using differential privacy with synthetic data can 
protect any outlier records from linkage attacks with other data. However, it 
may reduce the utility of the data and introduce a degree of unpredictability 
regarding the preservation of data characteristics. 

Further reading outside this guidance 

The links below provide useful reading on synthetic data techniques and their 
associated benefits and risks. 

The ONS has proposed a high-level scale to evaluate the synthetic data 
based on how closely they resemble the original data, their purpose and 
disclosure risk. 

For an evaluation of how synthetic data delivers utility, see Manchester 

University’s publication “A Study of the Impact of Synthetic Data Generation 
Techniques on Data Utility using the 1991 UK Samples of Anonymised 
Records” (external link, PDF). 

Reference table  

The table below provides some example use-case applications for PETs 
discussed in this guidance, together with information about whether 
standards are available and known limitations. Your purposes may require a 
combination of techniques to provide the required protection at all the 
various stages of the data processing lifecycle. This is not an exhaustive list. 

PET Applications Standards  
Known 
weaknesses 

Secure 
multiparty 
computation  

Cryptographic key 
protection within a 
single 

organisation: 
Secure multiparty 
computation 
allows an 
organisation to 
split its secret 

IEEE 2842-2021 – 
IEEE 
Recommended 

Practice for 
Secure Multi-Party 
Computation.  

ITU-T X.1770 
Technical 

Requires 
significant 
computational 

resources.  

Communication 
costs can be high. 

https://ico.org.uk/for-organisations/guide-to-data-protection/key-dp-themes/guidance-on-ai-and-data-protection/glossary/
https://www.ons.gov.uk/methodology/methodologicalpublications/generalmethodology/onsworkingpaperseries/onsmethodologyworkingpaperseriesnumber16syntheticdatapilot
https://unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2017/4_utility_paper.pdf
https://unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2017/4_utility_paper.pdf
https://unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2017/4_utility_paper.pdf
https://standards.ieee.org/standard/2842-2021.html
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.1770-202110-I!!PDF-E&type=items
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keys across 
multiple hosts. 

Pseudonymisation 

within a single 
organisation. 

Privacy-preserving 
analytics (eg 
training neural 
networks, 
evaluating 
decision trees). 

guidelines for 
secure multi-party 
computation.  

The IETF is 
currently 
developing a draft 
multi-party 
privacy preserving 
measurement 
(PPM) protocol 
standard.  

 

Homomorphic 
encryption  

Leverage cloud 
computing and 
storage services 
securely, as data 
held off-site is 
encrypted but can 
be processed.  

Secure machine 
learning as a 

service: data can 
be processed 
without giving 
processor access 
to encrypted data. 

Secure 
collaborative 
computation. 

Community 
standard for 
homomorphic 
encryption.  

Scalability and 
computation 
speed can be an 
issue.  

Fully 
homomorphic 
encryption is 
unsuitable for 
real-time data 

analysis. 

 

Differential 
privacy  

Performing 
statistical analysis 
with privacy 
guarantees (ie 
that presence or 
absence of an 
individual in the 
data will not affect 
the final output of 
the algorithm 

significantly). 

Useful for allowing 
databases to be 
queried without 

No standard 
available.  

No consensus over 
the optimal trade-
off of privacy and 
utility. You will 
need to tailor level 
of noise added will 
depend on the 
circumstances of 
the processing.  

Requires expertise 
to add the right 
amount of noise. 

https://abetterinternet.github.io/ppm-specification/draft-gpew-priv-ppm.html
https://abetterinternet.github.io/ppm-specification/draft-gpew-priv-ppm.html
https://abetterinternet.github.io/ppm-specification/draft-gpew-priv-ppm.html
https://abetterinternet.github.io/ppm-specification/draft-gpew-priv-ppm.html
https://abetterinternet.github.io/ppm-specification/draft-gpew-priv-ppm.html
https://abetterinternet.github.io/ppm-specification/draft-gpew-priv-ppm.html
https://homomorphicencryption.org/standard/
https://homomorphicencryption.org/standard/
https://homomorphicencryption.org/standard/
https://homomorphicencryption.org/standard/
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releasing 
information about 
individuals in the 
database. 

Zero-
knowledge 
proofs  

Proving claims 
about personal 
data (eg 
nationality, 
solvency, age, 
transactions).  

ZKProof 
Community 
Reference (2019)  

 

ISO/IEC 9798-5 
Information 
technology — 
Security 
techniques — 
Entity 
authentication — 
Part 5: 
Mechanisms using 
zero-knowledge 
techniques.  

 

Weaknesses in 
Zero-knowledge 
proof 
implementations 
can be caused by 
poor 
implementation of 
the protocol. 

Interactive 
protocols may be 
more vulnerability 
to side channel or 
timing attacks as 
they require the 
prover to send 
multiple 
messages. 

Generating 
synthetic 
data 

Use cases which 
require access to 
large amounts of 
data (eg model 
training, research 
and 
development). 

 

No standard 
available.  

 

 

 

Synthetic data 
may not represent 
outliers present in 
the original 
personal data. 

You will need to 
assess whether 
the personal data 
on which the 
synthetic data was 
trained can be 
reconstructed. 
Further additional 
measures (eg 
differential 
privacy) may be 
required to protect 
against singling 
out. 

Federated 
learning  

Applications where 
the aggregation of 
data into a 
centralised data 

IEEE 3652.1-2020 
– IEEE Guide for 
Architectural 
Framework and 

The devices or 
entities 
contributing data 
will need to have 

https://docs.zkproof.org/reference.pdf
https://docs.zkproof.org/reference.pdf
https://docs.zkproof.org/reference.pdf
https://www.iso.org/standard/50456.html
https://standards.ieee.org/standard/3652_1-2020.html
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server is not 
feasible or 
desirable (eg 
building models of 

user behaviour 
from device data, 
without the user 
data leaving the 
devices or 
carrying out 
research on data 
from multiple 
entities without 
the data being 
transmitted 
between them). 

Application of 
Federated 
Machine 
Learning.  

compatible 
formats and 
standards to allow 
the analysis to be 

carried out locally. 
This also requires 
sufficient local 
computing power. 

Federated learning 
requires frequent 
communication 
between the 
participating 
entities, which 
requires sufficient 
bandwidth.  

Requires other 
PETs to provide 
privacy to 
individuals data, 
this may affect 
performance and 

scalability. 

Trusted 
execution 
environments  

Protection against 
software attacks. 
Used for 
processing 
particularly 
confidential data 
within an existing 
system or device.  

IETF Trusted 
Execution 
Environment 
Provisioning 
(TEEP) 
Architecture 
(draft) 2021. 

Other 
standardisation 
initiatives are 
being developed 
by, 
GlobalPlatform, 
the Trusted 
Computing Group 
and Confidential 
Computing 

Consortium  

Side channel 
attacks possible 
with some earlier 
implementation. 
These attacks 
monitors certain 
properties of the 
system, such as 
the time required 
to perform an 
operation, to learn 
sensitive 
information. 

 

https://datatracker.ietf.org/doc/pdf/draft-ietf-teep-architecture-15
https://datatracker.ietf.org/doc/pdf/draft-ietf-teep-architecture-15
https://datatracker.ietf.org/doc/pdf/draft-ietf-teep-architecture-15
https://datatracker.ietf.org/doc/pdf/draft-ietf-teep-architecture-15
https://datatracker.ietf.org/doc/pdf/draft-ietf-teep-architecture-15
https://datatracker.ietf.org/doc/pdf/draft-ietf-teep-architecture-15
https://globalplatform.org/technical-committees/trusted-execution-environment-tee-committee/
https://trustedcomputinggroup.org/trusted-computing/
https://trustedcomputinggroup.org/trusted-computing/
https://confidentialcomputing.io/
https://confidentialcomputing.io/
https://confidentialcomputing.io/

